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Table 5. Calculated parameters versus the sample 
height (h), at a fixed radius R = 1 cm, at different 
values of  the sample attenuation coefficient tz and at 

two values of  the vanadium cell thickness t 

Results refer to the scattering angle 20 = 50 °. (a) Double-scattering 
parameter m (%); (b) y coefficient. 

(a) Vanadium cell; double-scattering parameter m 
h (cm) 

/x (cm -1) 1 3"33 5 10 

0.1 8.34 12.9 14.3 16.3 
0.3 18-3 27.1 29.7 33.8 
0.5 26.4 38.1 41.6 47.6 

0-1 10.4 16.5 18.2 20.8 
0.3 20-3 30.4 33.3 37.9 
0.5 28.4 41.3 45.2 51.7 

(b) Vanadium cell; y coefficient 
h (cm) 

/z (cm -x) 1 3"33 5 10 

0.1 0.887 0.886 0.886 0.885 
0.3 0.710 0.708 0.708 0.706 
0.5 0.582 0.580 0.579 0.578 

0-1 0.892 0.891 0.890 0.889 
0-3 0.722 0.720 0.719 0.717 
0.5 0.600 0.597 0.596 0.594 

t = 0.05 cm 

t =0.10cm 

t = 0.05 cm 

t=0-10cm 

The present program will be made available to 
interested parties on request. 

The authors wish to thank the referees for helpful 
suggestions in order to improve the presentation of 
this paper. One of us (CP) thanks F. P. Ricci for 
having suggested the problem. 
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Abstract 

It is shown theoretically that the contrast of syn- 
chrotron white-beam topographs, in most cases, is 
the superposition of the intensities produced by inco- 
herent point sources situated on the entrance surface 
of the crystal. This is the reason for the similarity 
between synchrotron topographs and laboratory 
translation topographs. It is a consequence of the 
spectral width of the radiation and of the particle 
beam size and divergence in the storage ring. Upper 
and lower bounds are given for the coherence length. 
The natural collimation of synchrotron radiation and 
the effect of the source-to-crystal and crystal-to-film 
distances are taken into account. The results are valid 
for a large class of synchrotron sources. 

0108-7673/90/060449-11 $03.00 

I. Introduction 

Synchrotron white-beam topography is an attractive 
technique for the investigation of crystal defects. 
Some of its advantages over laboratory topographs 
are imaging of large areas without moving the crystal, 
and shorter exposure times due to the high intensity 
of the beam. Many reflections can be recorded simul- 
taneously, and the whole crystal always gives rise to 
an image, even when it is curved or highly distorted, 
due to the wide wavelength spectrum. 

But synchrotron radiation is rather different from 
laboratory characteristic line radiation. Also, the dis- 
tance between source and crystal differs by about two 
orders of magnitude from laboratory arrangements. 
This raises the question of the interpretation of the 
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contrast of white-beam topographs, and of its 
relationship with laboratory topographic images. One 
important difference from laboratory experiments is 
harmonics superposition, because of the wide spec- 
trum of the incident beam (Tuomi, Naukharinen & 
Rabe, 1974; Hart, 1975). However, Tanner, Midgley 
& Safa (1977) have shown that the contrast of disloca- 
tions is the same as in translation laboratory topo- 
graphs when the amount of harmonics is negligible. 
Furthermore, Herres & Lung (1983) have shown that 
the contrast of many kinds of defects in synchrotron 
topographs with relevant harmonics contribution can 
be well reproduced by a superposition of laboratory 
images, taken at the harmonics wavelengths. It is thus 
experimentally established that, for each harmonic, 
the contrast of synchrotron white-beam topographs 
is the same as that of laboratory translation experi- 
ments, in spite of the differences in the diffraction 
conditions mentioned above. 

Up to now there has been no theoretical explana- 
tion of this similarity. This is our objective in this 
paper. In § II we analyse the diffraction conditions 
for a monochromatic point source in the laboratory 
and synchrotron mountings, pointing out their 
differences. In § III we present a general analysis of 
the diffracted intensity, taking into account the 
wavelength spread and source size, which explains 
the similarity of the images. In § IV we consider the 
influence of the crystal-to-film distance. 

This study is a preliminary to the writing of simula- 
tion programs for white-beam topographs, which will 
be published later. 

II. Diffraction conditions for a point monochromatic 
source 

Below, in order to simplify the notation we will rep- 
resent constants that are not relevant to the problem 
as A~, A2, A3 etc. 

II.1. The incident wave 

The electrical field D of the wave radiated by an 
electron is given by (Jackson, 1962) 

D(R, co)= A~co[exp (-i27rKR)/ R]l~(R, co), (1) 

with 
oO 

n(R,~)=  J' nx(nxl3 ) 
--CO 

x exp {-/co[ t - n .  r(t)/c]} dt. (2) 

R is the position vector of the observation point, 
R = JR], co = 2treK, c is the speed of light, K = l/A, A 
being the wavelength of the radiation, and n is a unit 
vector in the direction of R. r is the position vector 
of the electron, t is the time and 13 the electron's 
velocity divided by c. Equations (1) and (2) are valid 
when R >> ]r]. We see that, for each polarization, the 

field is a spherical wave multiplied by a function of 
the direction of observation that describes the colli- 
mation of synchrotron radiation (2). The angular 
width in which this function varies appreciably is 1/3/, 
where y = El  mc 2, m is the electron's mass and E its 
energy in the storage ring (Jackson, 1962). For the 
machines used to produce X-rays, 1 /y  must be of the 
order of 10 -4 rad. Since the angular width of the X-ray 
rocking curve, /tO, is about 10 -5 rad, /tO is much 
smaller than 1/Y. Thus, the vector 1~ in (2) is almost 
constant in the range/tO, and the incident wave may 
effectively be considered as a spherical wave. 

This conclusion is in agreement with the fact that 
the contrast in experiments may be explained assum- 
ing that a spherical wave is incident on the crystal, 
just as in the laboratory. However, because of the 
large source-to-crystal distance in synchrotron 
mountings, the effective divergence of the incident 
wave is of the order of za0, as we will explain in the 
next section. 

11.2. The effective divergence of the incident wave 

It is well known that the amplitude of the X-ray 
field at a point P0 on the exit surface of the crystal 
is determined by the amplitude of the incident wave 
along the base BA of the Borrmann fan on the 
entrance surface (Fig. 1). Consequently, the effective 
divergence of the incident wave is c~. We expect that, 
if c~ >> A0, the incident wave may be considered as a 
spherical one. On the other hand, if a ~ A0, we expect 
that the intensity at the point P0 will be the same as 
if the crystal were illuminated by a plane wave. Let 
us calculate the ratio AO/a. 

For simplicity we consider the symmetrical case 
only. We may write 

a -- tan c~ = BA cos O/L=2t sin O/L, 

where 0 is the Bragg angle, t is the crystal thickness 
and L is the source-to-crystal distance (Fig. 1). The 
width of the rocking curve of the perfect crystal in 
the symmetrical case is, neglecting the anomalous 
dispersion, 

/ t0  -- 2 lxh l / s in  20, 

Fig. 1. Geometry of the wave incident on the crystal, a is the 
effective divergence, t is the crystal thickness and L is the 
source-to-crystal distance. 
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where Xh is the hth Fourier component of the crystal 
polarizability. Thus, 

AOla = tfft, where t¢ = IxhlLIsin o sin 20. (3) 

In laboratory arrangements L---50cm. Taking 
Ixhl ~ 10-6, 0 ---- 10 ° and t = 1 mm, we get AO/a ~ 10 -2, 
so the incident wave may be considered as a spherical 
one. But in synchrotron arrangements L is much 
larger: taking L--30  m as a typical value, we obtain 
AO/o~-.-0.5. Thus the effective divergence is only 
twice the width of the rocking curve, and the incident 
wave may no longer be considered as a spherical 
one. 

In this section we used an argument in direct space 
to show that in synchrotron topographic arrange- 
ments the diffracted intensity distribution is not the 
same as that produced by a very divergent wave 
(a  >> A0), and that this is due to the large source-to- 
crystal distance. But in § II.1 we showed that the 
incident wave is, indeed, a spherical one, so that we 
may apply Kato's theory and get the usual intensity 
distribution along the exit surface of the crystal. This 
is a reasoning in reciprocal space, and it is in apparent 
contradiction with the one in direct space. This 
contradiction occurs because in Kato's theory, the 
source-to-crystal distance is not taken into consider- 
ation. This is because only part of the variation of 
the phase of the spherical wave on the entrance sur- 
face of the crystal is taken into account. Kato's 
approximation is valid for small source-to-crystal dis- 
tances, but it is not valid for the distances usually 
employed for synchrotron topographs. A spherical- 
wave theory that takes into account second-order 
terms in the phase change along the entrance surface 
has been developed by Aristov, Polovinkina, 
Afanas'ev & Kohn (1980). These authors conclude 
that if tc ~ t [(3)] the diffraction is well described by 
Kato's treatment, and that if tc is of the order of t a 
completely different fringe pattern appears. If t~ >> t 
the incident wave may be considered as a plane one. 
Their work confirms our qualitative direct-space argu- 
ment, and brings the reciprocal-space argument into 
agreement with it. However, the analysis of Aristov 
et al. is rather heavy and the argument presented 
here gives a simple physical explanation of the 
situation. 

Our considerations have shown that for a 
monochromatic spherical wave, that is, for radiation 
coming from a point source, synchrotron topographs 
should be quite different from laboratory translation 
images, because of the large source-to-crystal dis- 
tance. But this is in contradiction with the experi- 
ments. In order to understand why this effect is not 
observed, we must take into account the radiation 
non-monochromaticity and the source size. This is 
explained in the next section in the general case of 
a deformed crystal. 

III. The diffracted intensity on the exit  surface of  the 
crystal 

To understand the mechanism of formation of the 
contrast, it is sufficient to consider the diffracted 
intensity for a single harmonic and one polarization 
state (parallel or perpendicular to the diffraction 
plane), since the final contrast will be the sum of 
these contributions. We first express the diffracted 
intensity at a point Po on the exit surface of the crystal 
as a function of the crystal characteristics, of the 
incident wave and of the wavelength A by means of 
Takagi's theory. Then we analyse the influence of the 
wavelength bandwidth and of the source characteris- 
tics on the diffraction contrast. 

III.1. Expression of the diffracted intensity as a 
function of the incident wavefield 

Following Takagi (1969), we write the diffracted 
amplitude Dh at a point P on the exit surface of the 
crystal in the form 

Dh = AE(KCXhyo/sin 20) 

x exp [ - i 2 ¢ r ( k +  h) .  R] 

x j" ph(SC)~0O(S ¢) ds ¢. (4) 
B A  

Here C = 1 or cos 20 for parallel (or) and perpen- 
dicular (T r) polarization respectively and To--cos ~bo, 
~o being the angle between the incident beam and 
the normal to the crystal surface (Fig. 2). ~Oo = 
~i exp(i2zrk.  R), where ~i is the amplitude of the 
incident wave, that. is, the component of the field D 
(1) in the plane of incidence or perpendicular to it, 
for ¢r or cr polarization. BA is the base of the 

B M 0 A i 

s 0 ~ S h  

(a) 

L~ 

0 

oI" p "I 

(b) 

Fig. 2. (a) Geometrical parameters of the Borrmann fan. The 
vectors So and Sh have the directions of the incident and diffracted 
beams respectively, u is a unit vector along the axis BA. (b) 
Relative positions of the points on the exit surface of the crystal. 
Mo is the centre of the illuminated region. 
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Borrmann fan associated with point Po and ¢ the 
coordinate along BA (Fig. 2a). Vh is the Riemann 
function at the point Po; it depends on the crystal 
parameters and on the deformation inside the 
Borrmann fan. 

We also use a system of orthogonal axes with the 
x axis lying in the plane of the storage ring (assumed 
to be horizontal) and the y axis vertical, directed 
upwards. The z axis is oriented in the sense of circula- 
tion of the particles. For an insertion device the z 
axis is parallel to the axis of the device, with the plane 
z = 0 at the middle of its length. The origin is placed 
at the point where the trajectory of the synchronous 
particle traverses the plane z = 0  (Fig. 3a). For a 
bending magnet the z axis is tangent to the syn- 
chronous orbit at the origin. The position of the origin, 
on the orbit, is such that the point Mo lies in the plane 
x = 0  (Fig. 3b). Mo is the centre of the illuminated 
region of the entrance surface of the crystal. 

We define the wavelength ho so that the direction 
from the origin O (Fig. 3) to the point Mo (Fig. 2b) 
makes a Bragg angle 0 with the diffracting planes. 
Let Ro = OMo and Ko be a vector parallel to Ro. We 
define IKol-Ko--1/;~0 (r,o then satisfies the Bragg 
law). For a general wavelength h, K is the vector (in 
the plane of Ro and h) of modulus K = 1/h that 
satisfies the Bragg law for the wavelength h. The fact 
that the amplitude Dh varies with position inside the 
crystal permits us to choose the vector k (4) (Takagi, 
1969). To simplify the equations we choose k = K. 

Takagi (1969) writes the incident wave ~i as a 
modulated plane wave. Here it is more convenient to 
write it in the form of a modulated spherical wave 

~i=(~o/R)exp(- i2~KR).  (5) 

Henceforth we will approximate the R in the 
denominator of (5) (but not in the argument of the 

Io 
(a)  

y 

e 

-------r," o 
a 

xi" ~~ ~ crystal 

(b) 

Fig. 3. The reference system: (a) Insertion device source, e is the 
particle. (b) Bending magnet source. M o is the point in the centre 
of the base of the Borrmann triangle associated with point Po 
(Fig. 2b). 

exponential) by Ro. It is then just a constant, and 
will be included in the constants An. We then obtain 
from (4) 

Oh(K, P) -- 32(KCXhTo/sin 20) 

× exp [ - i 2 ~ ( K + h ) .  R] 

U2 

x J" ,,',,(~)'/'o(~) 
--1/2 

xexp [-i27r(KR-K.R)] d~, 

where l is the length of the segment BA (Fig. 2a). 
Let us define R=Ro+(p+sC)u,  u being a unit 

vector directed along the ~: axis (Fig. 2a), p the 
distance along the exit surface of the crystal between 
the points P0 and P (Fig. 2b), and -I /2 <- ~ <-1/2. 
Since p + s ~ < Ro we may assume that 

g = { [Ro+ (p + ~)U]2} 1/2 
-~ Ro + (p + ~:) sin ~o + y2o(p + ~)2/2Ro. 

Now, let AKo= K-Ko .  Keeping terms up to first 
order in AKo/Ko we find that 

KR - K .  R ~- KRo- K . Ro 

- To tan 0 AKop + (Ky~/2Ro)p 2 

- KoTo(tan 0 AKo/Ko- ToP~ Ro)~ 
+(KoT2/2Ro)~ 2. 

The diffracted amplitude at P for wavenumber K is 
then 

Dh(K, P) = A3(KCXhYo/sin 20) 

xexp( i2 K{ h+[sin 
/ --Thtan0-~o 1 p ~ j /  

Th/ 
U2 

x f Vh(~)gto(~)exp(-iEcrKoT2~2/2Ro) 
-U2 

AK___~o ToP~ ~] d~, 
xexp[i2zrK°T°(tanOKo -Roo/ 

(6) 

where 7h =COS Oh (Fig. 2a) and Rh = RoY2h/y~. 
We remark that the coefficient of ~ in the argument 

of the exponential inside the integral depends both 
on AKo/Ko and p. If Vh and gt o do not depend on p, 
the diffracted intensity at point P, for wavenumber 
K, will be the same as the intensity at Po at the 
wavenumber K',  so that tan O(K'-Ko)/Ko= 
tan 0AKo/Ko-Top/Ro.  This means that the 
wavelength around which the diffraction takes place 
varies with the position on the exit surface of the 
crystal. It may be seen from Fig. 2(b) that A '= 1/K' 
is just the wavelength for which the direction OM 
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makes a Bragg angle with the diffracting planes. 
To simplify the notation we write (K ' -Ko) /Ko= 
AK/Ko. The significance of the phase factor in front 
of the integral wil be discussed in § IV. 

Equation (6) gives the diffracted amplitude at P 
for one wavelength. The observed intensity I is the 
sum of IDh(K, p)12 over the spectrum of wavelengths. 
So 

1/2 

c2lXh 232 t~ 

t(P) = A4 / d~ d(,,h(~),,*(¢) 
sin 2 2 0 

l l W  

-1/2 

x exp [ -  i2 7rKo3,2(~2 _ ~,2)/2Ro] 

AKIn~2 

x f K2~o(~:) ~*(~ :' ) 

-AKIn~2 

×exp[i27r3,otan 0 A K ( ¢ - ¢ ' ) ] d A K ,  (7) 

where AK,, is the wavenumber bandwidth over which 
we sum. In the above expression we neglect the depen- 
dence of 0, Xh and bPh on the wavelength, since the 
range of AK is small. 

Having expressed the diffracted intensity as a func- 
tion of the incident field, we will now analyse the 
influence of the wavelength bandwidth and source 
characteristics on the diffracted intensity. 

111.2. The coherence length of the incident wavefield 

111.2.1. Wavelength band. We notice that the 
integration in AK in (7) is the Fourier transform of 
K2qt0(K,~)qZo*(K,~ ') multiplied by a rectangular 
function of width AK,,. This is the integral representa- 
tion of the mutual coherence function of the points 

and ~:' (Born & Wolf, 1959, p. 500). We will first 
discuss its behaviour for sources that produce a very 
wide spectrum, such as bending magnets and wig- 
glers, then for undulators that radiate a narrow 
spectrum. 

For the case of a wide spectrum, we may consider 
that K2~o(K,~:)~o*(K,s c') is practically constant 
in a small band where AAm/Ao=AKm/Ko'~I, SO 
that the last integral in (7) will be proportional 
to sin [ TrAKm3,o tan O(~- ~')]/ TrAKm3,o tan 0(~-  ~'). 
Thus, the relevant region of integration in s c' along 
the entrance surface is such that 

A~:= ~:-~:' =[3,o(tan O)AKm] -~ 

= ho[ 3,o(tan O)AKm/Ko] -1. (8) 

We observe that As ¢ is proportional to Ao/(AA/Ao), 
the usual coherence length of the radiation (Born & 
Wolf, 1959, p. 500). Since the spectrum is very large, 
we may arbitrarily choose the value of AKIn. If we 
consider AKm/Ko= 10 -3, which is the width of a 
characteristic line, ho = 1 ,~, Yo-~ 1 and tan 0 =0.2  
(0---10°), we find that Asr-0.5  ~m. In such a small 
region the Riemann function Uh is practically constant 

for nearly all crystals and defects, so that we may 
assume that Uh(¢')=Vh(~). We may also write 
exp [i27rKoy2(~ 2-~'2)/2Ro] = 1. Further, we may 
approximate ~o(£') as qto(£), since the angle subten- 
ded by a segment of about 0.5 Ixm at 30 m from the 
source is much smaller than 1/3,. These approxima- 
tions become better for larger values of AKIn. Thus, 
we may approximate the coherence function by 
6(~:-£') ,  and the integration in s c' will result in a 
constant. Equation (7) then becomes 

I( P) = As( KzC 2 Xh 2y2o/sin2 20) 

x 1i2 ~'h(~) : aFo(~) : d~:. (9) 
-t/2 

Let us consider the intensity at Po produced by a 
point source of unit strength situated at a point G on 
the segment BA (Fig. 2a). In this case ~o -- 6 ( ~ -  G), 
and from (7) we see that the intensity is 
[KoCXh3,o/Sin2Ol2[Uh(~,,)[ 2. Thus, (9) means that the 
total diffracted intensity at P is the sum of the 
intensities produced by point sources of strength 
I = distributed along the entrance surface. There 
is no phase relationship between the amplitudes 
created by these sources. This is the meaning of the 
small width (8) of the correlation function mentioned 
above. 

For values of ~ near the edges of the Borrmann 
triangle, the integration in s ¢' will not cover the whole 
width of the coherence function, so that the integra- 
tion in ~:' is in fact a function of ~. But the region 
where this function of ~: is not constant is of the order 
of the width of the coherence function, which is very 
small compared with the length l of the base of the 
Borrmann fan, so that we may neglect this effect. The 
same remark applies to the rapid oscillations of the 
Riemann function near the edges of the triangle. 

Let us now see what happens if the radiation is 
produced by an undulator. The spectrum is concen- 
trated around the harmonics of the fundamental value 
wf, with a distribution ~o(~)~o*(s c) proportional to 

{ sin [ N~(w/_wz- n)]} 2, 
Nzr( w / oJi - n ) 

where N is the number of periods of the undulator 
and n the order of the harmonic considered 
(Kitamura, 1980). The last integral in (7), which 
defines the correlation length A~, is the Fourier trans- 
form of this function (the variation of K 2 is negligible 
within its width). This transform is a triangular func- 
tion which is zero for A~ > nNho/3,0 tan 0. To estimate 
an upper bound of As ¢, we take a large number of 
periods, say N = 250; for Ao = 1 ]k, A~ is smaller than 
0.4 I~m for the third harmonic, which is still a small 
value. Thus, the conclusion is the same for both types 
of sources. 

Up to now we have considered only one particle 
in the storage-ring beam. To obtain the total intensity 



454 CONTRAST FORMATION IN SYNCHROTRON WHITE-BEAM TOPOGRAPHS 

effectively diffracted, we must sum the intensity given 
in (9) for all the particles of the beam, since the 
emissions of different electrons are not correlated. 
The particles in the beam are characterized by their 
position, direction of speed and energy, so we must 
sum (9) over these variables. But these integrations 
act only upon gr o and so do not change the form of 
the equation. As a result, I ~o(~)[ 2 represents the total 
intensity distribution of the incident beam along the 
base of the Borrmann fan. 

We have shown that the diffracted intensity, at each 
point on the exit surface of the crystal, is the sum of 
the intensities of point sources situated along the 
entrance surface of the crystal. Thus, the contrast of 
the images does not depend on the source-to-crystal 
distance. This mechanism of image formation is the 
same as in laboratory translation topographs, and this 
is the reason that both kinds of images look similar. 
We have shown that this is due to the large spectral 
width of the incident beam. In the next section we 
will show that the size of the source leads to the same 
effect. 

III.2.2. Influence of beam size and divergence. The 
particles in a storage ring follow slightly different 
trajectories around the synchronous orbit, so that the 
radiated X-ray field varies [(1)]. Let us see what is 
the influence, for a fixed wavelength, of this field 
variation on the diffracted intensity. 

The dynamic state of a particle, when it traverses 
the magnetic field region once, is characterized by its 
energy and by its position and velocity at a given 
time. We choose the origin of time so that t = 0 for 
z = 0. Let us call Xo and Yo the x and y coordinates 
of a general particle at z = 0. We define x6 = dx/ds 
and y6 = dy/ds at z = 0, s being the coordinate along 
the synchronous orbit. Since xr, yr,< 1, they are the 
angles that the velocity vector of the particle makes 
with the vertical and horizontal planes respectively 
(at z = 0). Further, let AE be the difference between 
the particle's energy E and the storage ring's norminal 
energy Eo. 

To analyse the variation of the radiated field with 
the trajectory followed by the particle it is convenient 
to write the trajectory in the form 

r(t)=ro+g(t,E, xo, Yo, X'o,Y'o), (10) 

where ro = xoi+yo], i and j being unit vectors along 
the x and y axes respectively. In general the vector 
g depends on Xo, Yo, x~, yr, E and on the magnetic 
field of the source. From (1), (2), (5) and (10) we get 

X/c0-" A6to exp (i27rn. ro)H(~:, to, E, xo, Yo, X~,y~) 
c o  

=A6to exp(i27rn.ro) J [n'x(n'x[3)]~.~ 
--OO 

x exp {- i to[  t - n ' .  g(t, E, Xo, Yo, x~, Y'o)/c]} dt, 
(11) 

where n' is a unit vector pointing from the point ro 
to the point of observation, and the symbol [ ]~,~ 
means the projection of n' x (n' x I~) in the directions 
of the cr or 7r polarizations respectively. Keeping 
terms up to the second order in (p + ~)/Ro, xo/Ro, 
yo/Ro and dropping an irrelevant constant, we may 
write 

n.r0=[y0(p+~)/Ro](X0COS ~0+y0sin ~0), (12) 

where Oh and ~o are the usual spherical coordinates 
of the vector h, that is, hx=sin Oh COS ~o, hy= 
sin Oh sin ~o. Substituting (11) and (12) into (6) we 
find that the intensity produced by one particle is 

IK ( P) = a7Ka'y~lXh[ 2 

? x ~,~(~)~,*(~')B n (~)g*(~ ' )  
-U2 

x exp[ i2-n'7o tan 0 AK(~:-  ~:')] 

x exp { i2 ~'KoTo[ (~:- ~:')/Ro] 

x (Xo cos ~o +yo sin ~o)} d~: d~:', (13) 

with B = e x p  [-i27rKo7o2(~ :2-~:'2)/2Ro]. We have 
omitted the other variables in the argument of H for 
clarity. 

To obtain the total intensity we must multiply 
IK (P) by the average number of electrons in each 
dynamic state and sum over the states. The average 
number of particles in a state of energy difference AE 
is (Elleaume, 1986) 

f~(AE)=Asexp[-½(AE/tr~)2], (14) 

where o-~ is a parameter of the storage ring that 
describes the energy dispersion of the electron beam. 

To analyse the spatial and angular dispersions we 
consider, for the moment, a reference system with the 
z axis directed along the tangent to the synchronous 
orbit at z = 0. We represent the quantities in this 
system by capital letters, e.g. Yo, Y~. The spatial and 
angular dispersions in the vertical plane are due to 
the betatron oscillations (for a plane ring). The 
average number of particles with a displacement Yo 
and an angle Y~ is (Elleaume, 1986) 

fr(Yo, Y~)=A9exp[-½(Yo/o'y)]2 2 

xexp[-½(Y~-QyYo)2/o~,], (15) 

with 

2 = Byfy, 2 O'y o 'y ,=eyl fy ,  Q y = f y l 2 f y .  

Here ey is the ring's vertical emittance, fly is the 
! 

vertical betatron function at z =0,  By = dfy/ds .  In 
the orbit plane, Xo and X~ are the sum of a betatron 
contribution Xb and an off-energy contribution: Xo = 
Xb + rlAE/ Eo, X~= X'b + rl'AE/ Eo. rl is the disper- 
sion function of the ring at z = 0 and 7/'= drl/ds. For 
a given AE the betatron position is then Xb = 
Xo-  rlAE/Eo and the average number of particles in 
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each state is 

f x (Xo,  X~) = A,o exp [ -  ½(Xo- n A E /  Eo)2/ 0 "2] 

~[Xo - rl 'AE / Eo x exp { -  1 , 

-Qx(Xo-r lAE/Eo)]2 /O2x ,} ,  (16) 

where o-x and Q~ have the same meanings as cry and 
Qy. We must now express Xo, Yo, x~, Y~ in terms 
of Xo, yo, x~, y~. For a bending magnet the tangent 
of the synchronous orbit is directed along the z axis, 
so that Xo =Xo etc. For insertion devices the tangent 
of this orbit makes a small angle with the device axis, 
which is the z axis, so that we may assume that Xo = Xo 
and Yo = Yo with a negligible error. Also, for the small 
rotations involved, the angles are additive, so that 
Y~ = Y~-Y~s, Y~s being the value of y~ for the syn- 
chronous particle, and similarly for the state Xo, x~. 
Consequently, the number of particles in the state Y0, 
y~ is fy(Yo, Y~). 

The number of particles in a state Xo, Yo, x~, y~), 
AE is proportional to the product of (14), (15) and 
(16), because the distributions are not correlated. 
Using (13) we get for the total intensity at point P, 
with wavenumber K, 

IK(P)  a l l g  4 Xh2"y 2 li2- = .dE dE'Vh(E)V*h(E')B 
--1/2 

x exp [ i2¢r3'o tan 0 A K ( E -  E')] 
oo 

x ~ /7(E)/7*(s  ~') exp {i27rKoTo[(E- E')/Ro] 
--OO 

x (Xo cos q~ +Yo sin ~p)} 

(-~Yo/cry) exp [ -½(Y~-  2 2 x exp , 2 2 Qyyo) / try,] 

x exp [ -  ½(Xo- , A E  / Eo)2/cr 2] 

x exp { -½[X~-n 'Z lE /Eo  

- O x ( x o -  r lAE/Eo)]2/orE,}  

x dAE dxo dyo dX~ d Y~. (17) 

We notice that the integrations over the dynamic 
variables of the electron beam define a function of E 
and AE that is a kind of correlation length. In general 
this function depends not only on the size of the 
electron beam, as usual in optics, but also on its 
divergence and energy spread. However, we will see 
that in most cases this function may be considerably 
simplified. 

It is possible to show that /7(E, to, Eo+AE,  
Xo, Yo, x~, y~) --~/7(E, to + Ato, Eo, Xo, Yo, x~, y~), with 
ato/to ~- 2 A E / E o .  Thus, a change in the energy of the 
particle is roughly equivalent to a change in 
wavelength. For most storage rings A E / E o = I O  -3. 
This means that the variation of H with the energy 
of the particle will be important only if the wavelength 
band emitted by the source is of the order of 10 -3 
(such as in the case of an undulator with a very large 
number of periods). But this happens only rarely, so 

that we will neglect the variation of /7  with the energy 
in (17). Performing the integration in AE we obtain 

IK(P)  A,2 K4 Xh 23/2 ' t  2 = dEdE'l.,h(E)V*h(E')B 
--1/2 

x exp [i2¢r7o tan 0 A K ( E -  E')] 
oo 

x f /7 (E) /7" (¢)  
--00 

x exp { i2"nKoTo[(E- E')/Ro] 

x (Xo cos ~p +Yo sin ~p)} 
1 2 2 x exp ( -  ~Yo/cry) 

x e x p [ - ½ ( Y ~ -  2 2 Qy ro) / cry'] 

( -  ~Xo/ cr x) x e x p  ~ 2 2 

x exp [ - ½ ( X ~ -  Qxxo)2/cr2,] 

x dxo dyo dX~ d Y~. (18) 

Here, 
2 crx = #xex + ¢(cr~/  Eo)L 

Qx = [ (# ' / 2 )  ~x + n'n(cr~/Eo)2]/cr:x, 

Crx, = ex ex + 1 + ~ 

We notice that the convolution in energy results in 
a function of the same form as (16), but with the 
parameters crx, crx, and Qx changed. This means that 
the energy spread of the particles results in an increase 
of the horizontal size and divergence of the beam, 
when the radiated f ie ld/7  does not depend on AE. 

The integrations in x~ and y~ result in a function 
of E, Xo and Yo that describes the total intensity, 
observed at the point E, produced by the particles 
that traverse the plane z = 0 at the point Xo, Yo (Fig. 
3). When multiplied by the Gaussian function of Xo, 
Yo, it represents the intensity distribution of the source 
seen from point E on the entrance surface of the 
crystal. Thus the integration in Xo, Yo is the Fourier 
transform of the source intensity distribution, that is, 
the source-correlation length (Born & Wolf, 1959, 
p. 508). The only difference is that this correlation 
length depends on the observation point, because of 
the collimation of synchrotron radiation. 

In general the function /7 depends on Xo and Yo 
through the vectors n' and g (11). Let us write the x 
component of the vector g (10) in the form gx = 
cx~t + px( t, Eo, Xo, Yo, X'o, y~), and similarly for the 
y component. If the functions Px and py are indepen- 
dent of Xo, Yo, x~ and y~, then the function 
/7(E, to, Eo, Xo, x~, Yo, Y~) may be shown to be of 
the form l I  ( to, Eo, nx - xo/ R o -  x~, ny - yo/ R o -  Y'o), 
where nx and ny are the x and y components of the 
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vector n. In this case the integration in x~ and y~ is 
simply a convolution. This is true for a bending mag- 
net, but not for an insertion device, because the mag- 
netic field depends on x and y (Brown, Halbach, 
Harris & Winick, 1983). So the functions p depend 
on Xo, Y0 (and also on x~ and y~). However, this 
dependence is usually small, in the range of values 
where the distributions of (15) and (16) are relevant, 
because the beam will always be near the axis of the 
device. Thus we may neglect it in most cases. The 
correlation function Corr then takes the simpler form 

Corr=A13G(¢-~:') i ]T/ (nx-qx 'ny  
--OO 

where 

-q )l E 

[--iqx/  ( Cr Rx + CrE,)] x exp ~ 2 2 

[-- ~q y/ ( O'Ry + Oy,) ] x exp ~ 2 2 2 

x exp { i27rKoYo[(¢- ~')/Ro] 

[ ( 1 / R o +  Qx)crEx cos ~p 
X l o . 2 + o . 2  ' qx 

-~ ( f / R ° +  QY)°2 sin ~ 1} 
2 qy dqx dqy 

cr2y + Cry, 
(19) 

2 2 crRx;y= crx;y( Qx;y "~- 1/Ro) 2, { 1[ 
G ( ~ - ~ ' ) = e x p  - ~  2~'Ko7o ~£ j 

( o'20 .2, cos 2 ~ o'20 .2, sin E q~\ / 
x ~ - - - - ~  + - - ~ - - - - - - - ~  . 

The correlation function is now the product of two 
terms. The first is the Gaussian function (3, which 
depends only on the electron beam characteristics 
and the source-to-crystal distance. The second term, 
the integral, depends both on the radiated field and 
on the electron beam, and describes the influence of 
the collimation of synchrotron radiation on the coher- 
ence length. Let us consider for the moment only the 
terms that vary in the vertical plane. It may be shown 

2 2 1/2, that when ITI 2 is much wider than O'y,(1 + crR/Cry') 
the correlation length is 

A~s = (Ao/27ryo) (Ro/try). 

In this case the correlation length depends only on 
the source size, and the intrinsic collimation of the 
radiation has no influence on it. As far as the coher- 
ence length is concerned, we may consider that the 
source emits a spherical wave. This is usually the case 
for low-emittance storage rings. 

W h e n  [HI E is much narrower than cry,(l + 0"2/-2 xl/2 Oy,] 
the correlation length is determined by the Gaussian 
G. This is usualy the case for high-emittance storage 

rings. The coherence length becomes 

A~m = A~s(1 + o '~/-E ,1/2 Oy' I • 

This is equivalent to having a smaller effective source 
size ere, such that 

A(m=(Ao/27r'Yo)(Ro/cre), (20a) 

with 

cre = Cry(1 + CrERI O y,)2 ,--1/2 

I t 2 -1/2  

\Ro 2 ]  J 
(20b) 

The reduction of the effective source size is due to 
the collimation of synchrotron radiation. 

A~:,, and A~s are the upper and lower bounds 
respectively for the correlation length, regardless of 
the form of the emitted radiation. We observe that 
when CrR '~ cry', A~m = A~s, SO that the correlation 
length is independent of the form of the radiated field 
[this may also be seen from (19)]. All these arguments 
apply when we consider the plane of the orbit [except 
the last form of (20b)]. 

From (19) and (20)we get the following expression 
for za~:m: 

2 A~m/Ro=(ho/2,rryo)(crEex COS 2 ~ + 0 .  y sin 2 ~)-~/2 
(21) 

The maximum value of this expression depends on 
2 2 the angle q~ if oex # O-ey, which is usually the case. 

Since the beam size is usually smaller in the vertical 
direction, the maximum occurs for q~ -- 7r/2 [see (11)], 
that is, when the diffraction vector is in the vertical 
plane. For a small value for crey, say 0.05 mm, we get 
from (21) that A~:/Ro--~3 x 10 -7 for A = 1/~,. This is 
about two orders of magnitude smaller than the 
natural divergence of synchrotron radiation, l / y ,  so 
we have assumed H(~:')--H(~:) in (18). 

For a low-emittance storage ring, a typical value 
of o%x is 0-5 mm. Thus, for Ao = 1 ,h, and R0 = 30 m, 
we get from (21) As¢ = 1 Ixm for ~0 = 0, so that we may 
still assume Vh(~:) = Vh(~') and B =  1 [see (12)] in 
most cases. This means that the total observed 
intensity is the superposition of the intensities pro- 
duced by point sources on the entrance surface of 
the crystal, as for the wavelength spread (9). For 
reflections with the h vector perpendicular to the 
plane of the orbit q~ = 90 °, and A~ is of the order of 
5 ~m for Grey = 0"1 mm. In these cases we may no 
longer assume vh(~:) = Vh(~:'), SO that the reduction of 
the expression of the diffracted intensity to a sum of 
the intensities of incoherent point sources is due only 
to the radiation polychromaticity. For a high-emitt- 
ance storage ring, cry is usually greater than 0.5 mm, 
so that the radiation is incoherent for all diffraction 
directions. 
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IV. Effect of the crystal-to-film distance 

To calculate the intensity on the exit surface of the 
crystal we have added the intensities produced by all 
the points of the source, for all the wavelengths. 
However it is well known that, beyond the crystal, 
the diffracted beams produced by different point sour- 
ces and at different wavelengths propagate in different 
directions. Consequently, the intensity on the film is 
the superposition of the intensities of different points 
of the exit surface of the crystal. This intensity, on 
the crystal surface, is the sum of the intensities pro- 
duced by the fraction of source points and 
wavelengths for which the diffracted beams propagate 
along the same direction. This fact must be taken into 
account in the analysis of the mechanism of image 
formation in the film, since the major factor of this 
mechanism is the coherence length, which is in turn 
determined by the source size and wavelength band. 
Thus, we will first determine the intensity at a point 
on the exit surface of the crystal, for all source points 
and wavelengths whose diffracted beams propagate 
along the same direction after the crystal. We call this 
intensity partial intensity. 

The diffracted beam propagates in the incidence 
plane, that is, the plane parallel to the diffraction 
vector h that contains the point P on the exit surface 
of the crystal and the source point. As the source 
extends across the incidence plane, the partial 
intensity is now the sum of the intensities produced 
only by the points of the source belonging to the line 
of intersection of the source surface and the incidence 
plane. Let us consider one of these source points. In 
the incidence plane, the direction of propagation of 
the diffracted beam varies with the wavelength by an 
amount tan 0 AAo/)to, because of the change in the 
Bragg angle. In the case of synchrotron topographs 
there is an additional change, due to the variation of 
phase of the incident spherical wave along the 
entrance surface of the crystal. In fact, the phase 
factor before the integral in (6) shows that the diffrac- 
ted field is a modulated spherical wave coming from 
a virtual source situated at a distance Rh = Roy2h/y 2 
from the entrance surface, along a line that makes an 
angle ~bh + tan  0A)to/Ao(1 + YO/Yh) with this surface 
(Fig. 4). Thus, for any given point on the exit surface 
of the crystal, the change in the direction of propaga- 

cr.x .q.:l 

t.)h 

/ 'i ",..,,,, 

Fig. 4. Position, for wavelength A, of the virtual source Oh of the 
spherical diffracted wave. 

tion of the radiation due to a change in wavelength, 
8Oh, is (for a crystal with parallel faces) 

8qSh=(aAo/Ao) tan O(l+yo/Yh). (22) 

We notice that this change in the direction of propa- 
gation of the diffracted beam is always greater than 
the usual value tan O AAo/Ao. For a symmetrical 
reflection 6~h is twice as large, and more than this if 
the incident beam is normal to the crystal surface. 
The origin of the extra term may be interpreted 
geometrically as follows. Let us assume that the crys- 
tal is perfect and that the effective divergence of the 
incident wave is negligible (c~ < AO, § II.2). For sim- 
plicity we consider the symmetric case only. In this 
case the intensity profile along the exit surface of the 
crystal, for the wavelength Ao, is a rocking curve, with 
the angular deviation from the Bragg angle, 60, being 
given by yop/Ro (Fig. 5). This may be seen from (6): 
in this case the quadratic term in ~ may be neglected, 
and the integral becomes the Fourier transform of 
the Riemann function. This is the amplitude diffracted 
when a plane wave is incident on the crystal, and the 
square of its modulus is the rocking curve. The diffrac- 
ted beam is a wavepacket, centred at the point Po, 
and it propagates beyond the crystal along the average 
direction Ko+ h. Each point on the entrance surface 
receives a wave with a different value of 60. Since, in 
the symmetric case, each ray is mirror reflected in the 
lattice planes, each point, on the exit surface, radiates 
a ray that makes an angle 60 with the direction Ko + h. 
Thus, the diffracted beam is a divergent wave. For 
the wavelength A the beam is a wavepacket centred 
at point P (so that yop/Ro=tan OAAo/Ao) and it 
propagates along the average direction K+h.  The 
angle between these two average directions is the 
usual value tan 0 AAo/Ao. To obtain &bh, at a given 
point, say Po, we must add the angle between Ko and 
K to the angle 60 between the rays coming out from 
Po and P. The result is (22). 

To calculate the partial intensity we use a system 
of coordinates x~ and y~, which may be expressed in 
terms of Xo and Yo by a rotation of an angle q~ about 
tile z axis. When we take into account the different 

j 
" ~ / M  0 

O 

/ 

Fig. 5. Geometrical interpretation of the change in the direction 
of propagation of the diffracted beam. The continuous line is 
the intensity profile for the wavelength Ao and the dashed line 
is the profile for wavelength A. 
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point sources in the diffraction plane there is an extra 
term that contributes to the change in the direction 
of propagation, that comes from (12). The total 
change in direction of propagation, A@h, is 

A 0  h = ~AA° tan 0 + yo (AA tan 0+~o).Xl 
)to Yh \ ho 

The second term of this equation, which does not 
exist in laboratory topographs, is due to the fact that 
the whole crystal is illuminated by a spherical wave. 
This is itself a consequence of the large source-to- 
crystal distance. 

The partial intensity is given by (18), where, instead 
of integrating over Xo, Yo and AK, we now integrate 
over the new coordinate xl and AK, under the restric- 
tion that A~bh be constant. This means that the integra- 
tions in xl and AK are not independent. As a result, 
using the arguments of the preceding section, we 
obtain the coherence length after the crystal, A~:v: 

Abe,, -- A~,,, ( 1 + '/o/~',,) 
I 2 2 2 sin E 2~ (o'~- Grey ) ] 1/2 

- ~  2 2 (23) 
x 14 4 trexCrey J 

We observe that A~:o is greater than A~m by a factor 
(1 + Yo/Yh)- Furthermore, there is an increase in A~:o 
if the dimensions of the electron beam in the vertical 
and horizontal planes are different. This effect may 
be noticeable if the beam is very flat. When o'ex = 5trey 
the coherence length increases by a factor of 2.6 for 
~p = 45 °. 

To obtain A~ we have reasoned as if the diffracted 
beam propagated by means of rays, as in geometrical 
optics. This intuitive argument may be justified 
rigorously on the basis of the Huygens-Fresnel prin- 
ciple, and it is valid if the film is near the crystal (less 
than about 10 cm, if the contrast is nearly constant 
in a region of 2 ~m along the crystal surface). 

When the correlation length A~o is small enough, 
the intensity at a point on the crystal surface is still 
the sum of the intensities of incoherent point sources, 
as we have seen before. In this case the diffracted 
wavelength band is determined by the effective source 
size [this may be seen from (18)], and the intensity 
distribution on the film is simply a convolution of the 
intensity on the crystal surface with a Gaussian func- 
tion. Thus, except for a loss of resolution, the contrast 
on the film is the sum of the contrasts produced by 
incoherent point sources on the entrance surface of 
the crystal. 

We have seen, in the preceding section, that for 
low-emittance storage rings the coherence length 
A~:m--A~:s < A~o is not small enough. In the plane of 
diffraction, the intensity reaching a point in the film 
will be the sum of the intensities of the points situated 
in a region whose size is the product of A~h by the 
crystal-to-film distance, d. The value of A~bh is deter- 
mined by the wavelength band diffracted by the crys- 

tal and the effective source size. Two cases must be 
considered. When the variation of the contrast in the 
region dASh is negligible, we may neglect the vari- 
ation of the Riemann function with the point P. As 
we are summing the intensities for different A~h, we 
may integrate separately over xl and AK in (18), 
which means that (9) remains valid. This happens 
when d is small enough, and corresponds to the 
situation where there is no resolution loss in the plane 
of diffraction. The contrast in the film is thus the same 
as on the crystal surface, except for a possible loss 
of resolution in the direction perpendicular to the 
diffraction plane. A typical value of d is 5 cm. If we 
assume 0 = 10 °, YO/Yh --~ 1 and AA/A0=3x 10 -4, we 
get (neglecting the term xffRo for low-emittance 
rings) dA~bh = 6 lxm. In this range, the contrast may 
not be considered as constant for the most distorted 
regions of a crystal. In this case the contrast in the 
film may not be described as a superposition of the 
contrasts produced by incoherent point sources on 
the crystal entrance surface. The experimental param- 
eters, such as the source-to-crystal distance, influence 
the observed contrast and synchrotron topographs 
will no longer resemble laboratory ones. This might 
be the case at the ESRF station, and new contrast 
would be observed. 

We have considered explicitly the case of a crystal 
with plane surfaces. Clearly this is a good approxima- 
tion when the bending radius of the surfaces is much 
greater than the source-to-crystal distance. This 
restriction is not important in laboratory mountings, 
where Ro=40cm,  but it is much more drastic in 
synchrotron arrangements, where Ro"-30m. How- 
ever, it may be shown without difficulty that our 
results remain valid if the crystal surfaces are curved, 
provided that the local radius of curvature is not 
much smaller (about 1/10) than Ro, which is seldom 
the case. Furthermore, the results of § III are also 
valid for the Bragg case (for thick crystals), since the 
integral representation of the diffracted amplitude, 
(4), is also applicable in this case (Uragami, 1969). 
The propagation of the beam after the crystal is more 
complicated than in the Laue case. 

V. Concluding remarks 

We have shown that the contrast on the exit surface 
of the crystal is the superposition of the intensities 
produced by incoherent point sources situated on its 
entrance surface, in spite of the large distance between 
the source and the crystal. This is the reason for the 
similarity between synchrotron and laboratory topo- 
graphs, and it is due to the small coherence length 
of synchrotron radiation. The coherence length is 
determined by the wavelength bandwidth and the 
electron-beam characteristics in the storage ring. We 
have determined the upper and lower bounds of the 
source coherence length. The lower bound does not 
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depend on the collimation of synchrotron radiation; 
it is determined by the source size, as in usual optics. 
The upper bound is inversely proportional to the 
effective source size, and it is independent of the 
magnetic field of the source point in the storage ring. 
The upper bound is larger than the lower one because 
of the collimation of synchrotron radiation. When 
both the electron beam divergence and the ratio 
source size/source-to-crystal distance are small, com- 
pared with the intrinsic divergence of the radiation, 
the source coherence length is near its lower bound. 
This is usually the case in low-emittance storage rings. 
When the above ratio is large compared with the 
radiation divergence, as happens for high-emittance 
rings, the coherence length is near its upper bound. 
However, the coherence length is usually shorter in 
the latter case than in the former one. 

The contrast on the film is the same as on the exit 
surface of the crystal, except for a resolution loss, 
when the source correlation length is much smaller 
than the distance where the contrast along the crystal 
surface varies appreciably. This is the situation for 
high-emittance storage rings. For low-emittance rings 
this is not true if the contrast varies rapidly (e.g. 
dislocation images), unless the film is very near the 
crystal. However, such contrast modifications, which 
take place only in small regions of the image (where 
the contrast varies rapidly enough), are difficult to 

observe, because of the resolution loss. Thus, in the 
analysis of practical experiments, we may consider 
that the contrast of synchrotron white-beam topo- 
graphs is the superposition of the images produced 
by incoherent point sources situated on the entrance 
surface of the crystal. 

We thank C. Malgrange for helpful discussions. 
One of us (CAMC) acknowledges a doctorate 
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Abstract 

An X-ray crystallographic method has been intro- 
duced into the image processing of high-resolution 
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electron microscopy. This enables the deconvolution 
of single electron micrographs of a crystalline sample. 
For this purpose the chemical composition of the 
sample should be known approximately, the image 
should be taken near the optimum defocus condition, 
but no preliminary knowledge of the crystal structure 
is needed. The method has been proved to be efficient 
with a high-resolution electron micrograph of chlori- 
nated copper phthalocyanine taken on the Kyoto 
500 kV electron microscope. 
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